Microbiological testing criteria

Minimum testing requirements for manufacturers of dairy food products

July 2015  |  Revised September 2016
Preface

Dairy Food Safety Victoria has reviewed its requirements for the testing of dairy products by manufacturers. This document outlines minimum testing requirements based upon microbiological criteria in the Australia New Zealand Food Standards Code (Standard 1.6.1), and the complementary limits in the User guide to Standard 1.6.1.

With ongoing amendments to microbiological criteria in the Food Standards Code, this document will be regularly revised and reissued.

Contents

Preamble 3
Introduction 3
Qualitative and quantitative testing 4
Sampling 5
  Composite samples 5
  When is compositing appropriate? 5
Frequency of testing and number of samples tested 5
Laboratory accreditation 6
Sampling methods 6

Minimum testing requirements 6
1. Milk and cream 6
2. Butter and dairy blends 7
3. Cheese 8
4. Dried milk powder (including dried powder blends) 9
5. Ice cream and frozen products (including frozen dairy desserts) 10
6. Fermented milk products 10
7. Dairy-based dips and desserts 11

Summary 12
Appendix I - Ready-to-eat (RTE) foods 13
Glossary of terms 14
References 15
Further information 15
Preamble

Under their approved food safety program, manufacturers of dairy products are required to test finished products. This document describes the minimum testing requirements for such products, the results of which provide:

- data that a manufacturer’s food safety program is delivering a product which meets the parameters for safe food, and
- confidence in the capacity of the food safety program to consistently deliver the required result.

All licensees are encouraged to test more frequently than these minimum requirements.

Introduction

With the dairy manufacturing industry using HACCP-based food safety programs and adhering to good manufacturing practices (GMP), the microbiological testing of finished products serves the prime purpose of verifying the effectiveness of process control actions. The type of tests and their frequency are influenced by the risk-status of the dairy food, and while testing every batch is desirable, it is not practical, so the sampling and testing frequency outlined in this document is judged as the minimum.

The testing of finished products also has a role in confirming process capability (validation); investigative testing; verifying remedial activity; and assisting in establishing benchmarks and identifying trends.

While finished product testing can provide information that helps to assure the safety of food products, it cannot be relied upon to guarantee the safety of a food because of limitations associated with sampling plans. For this reason, the greatest emphasis is placed upon the development and implementation of preventative approaches, and these are documented in each manufacturer’s food safety program.

The Australia New Zealand Food Standards Code (Code) lists microbiological criteria for dairy foods in Standard 1.6.1—Microbiological Limits for Food and complementary limits in the User guide to Standard 1.6.1. The standard establishes the maximum permissible levels of foodborne microorganisms in nominated foods. Risk assessment has shown that the likelihood of foodborne illness following consumption of these foods is relatively high when these criteria are exceeded.

The microbiological criteria listed in the standard and user guide serve as benchmarks, against which unacceptable levels of dairy food contamination can be identified. Test results exceeding these limits should trigger remedial action. Failure to meet these levels generally indicates a failure in either the process or hygiene procedures, and requires action to identify the cause and remedy the problem.

The likelihood of foodborne illness is relatively high when these microbiological criteria are exceeded.

1HACCP – Hazard analysis critical control point system
Qualitative and quantitative testing

Microbiological testing involves either qualitative or quantitative tests. Qualitative tests establish the presence or absence of an organism, such as a pathogen in food e.g. *Listeria monocytogenes*. Quantitative tests determine the number of organisms in a sample e.g. 150 E. coli/gram.

Testing of foods then involves either two-class or three-class sampling plans.

Two-class sampling plans are performed when the microorganism of concern is not permitted in the food, and are described using parameters such as $n = 5$ and $c = 0$. This is an example of a plan for testing dairy products for the presence or absence of Salmonella spp. or *L. monocytogenes*.

If some microorganisms are permitted in a unit-volume, a three-class sampling plan is usually adopted and involves quantitative testing. These plans separate good quality, from marginally acceptable quality, and unacceptable quality using the terms $m$ and $M$. For example: $n = 5, c = 1, m = 1, M = 10$.

**n** = number of sample units drawn from a lot/batch  
**c** = maximum allowable number of sample units yielding a positive result (presence/absence testing) or exceeding the microbiological limit m. For pathogens, c is usually 0

**m** = microbiological limit which separates good quality from non-acceptable or defective quality. The maximum number of samples which may exceed this limit is given by c

**M** = microbiological limit above which results are unacceptable or defective

The term m reflects the upper limit under GMP, while M marks the limit beyond which the level of contamination is considered hazardous or unacceptable.
Sampling

A sample is a small part or quantity from a lot/batch that, when tested, is deemed to represent the lot/batch as a whole. Samples taken for verification or regulatory requirements must be of finished product at the end of the manufacturing and packing process. A lot or batch of food typically represents one day’s production on one production line. Food from a batch is expected to have uniform character and quality, and is produced during the same cycle of manufacture i.e. a shift, a single day’s production. If samples are not collected properly, are mishandled, or not representative of the sampled lot, the test results will be meaningless.

Where different dairy products are manufactured in a premise, it is necessary to conform to the minimal sampling requirements for each product. However, where different products are made on the same production line during the course of a single day, the requirement is to test only one of those products. Each different product needs to be tested on a rotation basis over time.

A batch represents one day’s production on one production line

Where a DFSV-licensed manufacturer also produces non-dairy foods e.g. non-dairy dips or desserts, they need to address the appropriate product sampling and testing criteria for these products in their food safety program.

Composite samples

A composite sample is the consolidation of a number of samples from the same lot/batch to produce a single sample (or test portion) for qualitative (absence or presence) microbiological testing. Compositing is used when the number of samples required to assess the microbiological quality of a lot/batch is large in terms of laboratory resources or cost. Compositing of samples must not reduce the sensitivity of an analytical method at very low levels of contamination such that a potentially positive result is missed. Hence the maximum number of samples that may be composited is fifteen.

When is compositing appropriate?

Compositing is not appropriate for quantitative tests. Compositing is only appropriate for qualitative microbiological tests (those that establish the presence or absence of an organism).

Examples include testing products for the presence or absence of L. monocytogenes or Salmonella. In these cases a composite sample may involve five separate samples of 25 grams from a batch, producing a composite sample of 125 grams. While up to 15 samples may be composited, lower numbers may be necessary depending on laboratory equipment and the capacity to handle large volumes of diluents.

Composite samples is not appropriate for quantitative tests.

Frequency of testing and number of samples tested

Although it is desirable to test every lot/batch against the relevant microbiological criteria in the Code and User Guide, DFSV recognises this places a significant burden on small-scale dairy manufacturers. DFSV has established minimum testing frequency (typically every 10 or 20 batches) based on historical trends and the risk profile of different dairy products. Where different products are made on the same production line during the course of a single day, the frequency of testing should be consistent with the highest risk product on that line.

Where dairy products are manufactured infrequently, an extended period may elapse before every 10 or 20 batches are tested, in which case testing should occur at least once every two months.

Under the minimum sampling regime, a single sample may be used to represent a batch for quantitative testing, as an alternative to the five samples listed in the Code. Where only a single sample is tested (n = 1), no sample (c = 0) is permitted to exceed the value of m in the tables. For example, the limit in the Code for E. coli in cheese is n = 5, c = 1, m = 10, M = 100. If a manufacturer chooses to test only one sample, the limit becomes 10 E. coli/gram.

Note that there may also be instances where DFSV will require more intensive sampling regimes to be adopted e.g. following a failure to meet microbial limits or a poor audit record. New entrants to dairy processing are also expected to undertake more frequent product testing. Where a clearance program has been initiated following a pathogen detection, this overrides these minimum testing requirements.

Manufacturers of product for export will still need to meet the sampling requirements of the Code e.g. when cheese is being tested for E. coli, n = 5 samples must be tested.
Laboratory accreditation

All finished product testing performed for the purpose of meeting the minimum testing requirements described in this document must be undertaken by a suitably accredited laboratory. Usually this will be a National Association of Testing Authorities, Australia (NATA) accredited laboratory. Such laboratories will comply with relevant international and Australian standards and provide consistently reliable testing data to industry.

Sampling methods

A sample drawn from a batch should reflect as accurately as possible the properties of the entire batch from which it is taken. It may be an individual sealed or wrapped dairy food item (carton of milk, tub of yoghurt), or a sub-sample from a larger unit e.g. 100 grams from a 20 kilogram block of cheese. Equipment such as spatulas, triers, or pipettes; sterile bottles and bags; and sterilising equipment will be required for taking sub-samples.

The microbiological integrity of the unit needs to be protected at all times, so sub-samples must be aseptically taken and placed in sterile containers. All samples for microbiological analysis should be transported under temperature controlled conditions (where appropriate) to the testing laboratory as soon as possible.

Minimum testing requirements

1. Milk and cream

<table>
<thead>
<tr>
<th>Product types</th>
<th>Test to be conducted</th>
<th>Limit – FSC or User Guide</th>
<th>DFSV minimum requirements</th>
<th>Frequency</th>
</tr>
</thead>
</table>
| Pasteurised liquid milk products (Includes flavoured milk and extended shelf-life (ESL) products) | E. coli/ml | n = 5  
c = 1  
m = 1  
M = 10 | 1 sample  
(Limit: 1/ml) | Every 10 batches |
|  | Listeria monocytogenes/25ml | n = 5  
c = 0  
Not detected in 25ml | 5 samples composited  
(Limit: ND/125ml) | Every 10 batches |
| Pasteurised liquid cream products | E. coli/ml | n = 5  
c = 1  
m = 1  
M = 10 | 1 sample  
(Limit: 1/ml) | Every 10 batches |
|  | Listeria monocytogenes/25ml | n = 5  
c = 0  
Not detected in 25ml | 5 samples composited  
(Limit: ND/125ml) | Every 10 batches |

General comments:

- *E. coli*: Testing for coliforms is an acceptable screening method. Further testing or confirmation of whether *E. coli* is present is required when coliform numbers exceed the limits for *E. coli* described above. Positive coliform results must be followed up with appropriate corrective action.
- *L. monocytogenes*: Absence in 25 ml is required in dairy products that will support the growth of *L. monocytogenes*. Qualitative results for *L. monocytogenes* are reported as present or absent in 25 ml (as testing involves five samples of 25 ml, it may also be reported as absent in 125 ml).
## 2. Butter and dairy blends

<table>
<thead>
<tr>
<th>Product types</th>
<th>Test to be conducted</th>
<th>Limit – FSC or User Guide</th>
<th>DFSV minimum requirements</th>
<th>Frequency</th>
</tr>
</thead>
</table>
| Butter and dairy blends (salted) | Coagulase-positive staphylococci/g | n = 5  
c = 0  
m = 100 | 1 sample (Limit: 100/g) | Every 20 batches |
|              | E. coli/g            | n = 5  
c = 2  
m = 1  
M = 10 | 1 sample (Limit: 1/g) | Every 20 batches |
| Unsalted butter and dairy blends, reduced fat and reduced salt spreads | Coagulase-positive staphylococci/g | n = 5  
c = 0  
m = 100 | 1 sample (Limit: 100/g) | Every 10 batches |
|              | E. coli/g            | n = 5  
c = 2  
m = 1  
M = 10 | 1 sample (Limit: 1/g) | Every 10 batches |
|              | Listeria monocytogenes/25g | n = 5  
c = 0 | Not detected in 25g | 5 samples composited (Limit: ND/125g) | Every 10 batches |
| All butter and dairy blends with post pasteurisation ingredients and inclusions | Coagulase-positive staphylococci/g | n = 5  
c = 0  
m = 100 | 1 sample (Limit: 100/g) | Every 10 batches |
|              | E. coli/g            | n = 5  
c = 2  
m = 1  
M = 10 | 1 sample (Limit: 1/g) | Every 10 batches |
|              | Salmonella/25g       | n = 5  
c = 0 | Not detected in 25g | 5 samples composited (Limit: ND/125g) | Every 10 batches |
|              | Listeria monocytogenes/25g | n = 5  
c = 0 | Not detected in 25g | 5 samples composited (Limit: ND/125g) | Every 10 batches |

### General comments:
- Butter and dairy blends are considered to be a low risk product. This is because the combination of low moisture content (<16%) and high salt (up to 2% all within the water phase) contribute to salted butter providing a hostile environment for both spoilage and pathogenic microorganisms.
- Unsalted or salt-reduced butter or dairy blends are more likely to support survival and growth of microorganisms, hence the increased frequency of testing. Similarly low fat dairy spreads have a higher moisture content and present higher risk.
- Testing for Salmonella may not be required if the relevant post-pasteurisation ingredients have been tested by an accredited laboratory (i.e. NATA certified).
### 3. Cheese

<table>
<thead>
<tr>
<th>Product types</th>
<th>Test to be conducted</th>
<th>Limit – FSC or User Guide</th>
<th>DFSV minimum requirements</th>
<th>Frequency</th>
</tr>
</thead>
</table>
| All cheese (Except categories listed below) | Coagulase-positive Staphylococci/g | n = 5  
c = 2  
m = 100  
M = 1000 | 1 sample  
(Limit: 100/g) | Every 20 batches |
| | E. coli/g | n = 5  
c = 1  
m = 10  
M = 100 | 1 sample  
(Limit: 10/g) | Every 20 batches |
| | Listeria monocytogenes/25g | Refer to Appendix I (RTE Foods)* | Recommend 5 samples composited and tested | Every 20 batches |
| Soft and semi soft cheese (Moisture content greater than 39% and pH greater than 5.0) | Coagulase-positive Staphylococci/g | n = 5  
c = 2  
m = 100  
M = 1000 | 1 sample  
(Limit: 100/g) | Every 10 batches |
| | E. coli/g | n = 5  
c = 1  
m = 10  
M = 100 | 1 sample  
(Limit: 10/g) | Every 10 batches |
| | Salmonella/25g | n = 5  
c = 0  
Not detected in 25g | 5 samples composited  
(Limit: ND/125g) | Every 10 batches |
| | Listeria monocytogenes/25g | n = 5  
c = 0  
Not detected in 25g | 5 samples composited  
(Limit: ND/125g) | Every 10 batches |
| Cheese with post pasteurisation inclusions | Coagulase-positive Staphylococci/g | n = 5  
c = 2  
m = 100  
M = 1000 | 1 sample  
(Limit: 100/g) | Every 10 batches |
| | E. coli/g | n = 5  
c = 1  
m = 10  
M = 100 | 1 sample  
(Limit: 10/g) | Every 10 batches |
| | Salmonella/25g | n = 5  
c = 0  
Not detected in 25g | 5 samples composited  
(Limit: ND/125g) | Every 10 batches |
| | Listeria monocytogenes/25g | Refer to Appendix I (RTE Foods)* | Recommend 5 samples composited and tested | Every 10 batches |
| Shredded, grated and cut cheese (excluding soft and semi-soft cheese) | Coagulase-positive Staphylococci/g | n = 5  
c = 2  
m = 100  
M = 1000 | 1 sample  
(Limit: 100/g) | Every 10 batches |
| | E. coli/g | n = 5  
c = 1  
m = 10  
M = 100 | 1 sample  
(Limit: 10/g) | Every 10 batches |
| | Listeria monocytogenes/25g | Refer to Appendix I (RTE Foods)* | Recommend 5 samples composited and tested | See below† |

* Establish if product will or will not support the growth of L. monocytogenes.
† The likelihood of Listeria contamination of shredded, grated, and cut cheese is quite high, so monitoring of these products should be maintained, although the frequency of testing and the methodology will depend upon the properties of the cheese. Where a product contains greater than 39% moisture, it should be considered high risk and every 10 batches should be tested for absence in 25 grams. For medium risk shredded, grated, and cut cheese (less than 39% moisture), enumeration every 20 batches is considered adequate.

**General comments:**
- All cheese needs to be tested for Listeria. The physico-chemical properties of each cheese will determine which limit applies (See Appendix I).
- Soft and semi-soft cheeses are predominately mould-ripened cheeses and are considered high risk.
- Starter culture, fermentation aids and rennet are not classified as post-pasteurisation inclusions.
### 4. Dried milk powder (including dried powder blends)

<table>
<thead>
<tr>
<th>Product types</th>
<th>Test to be conducted</th>
<th>Limit – FSC or User Guide</th>
<th>DFSV minimum requirements</th>
</tr>
</thead>
</table>
| Dried milk powder* | Salmonella/25g | n = 5  
c = 0  
Not detected in 25g | 5 samples composited  
(Limit: ND/125g) | Every 20 batches |
|                 | Bacillus cereus/g   | n = 5  
c = 1  
m = 100  
M = 1000 | 1 sample  
(Limit: 100/g) | Every 20 batches |
| Powdered infant formula products with added lactic acid producing cultures | Salmonella/25g | n = 60  
c = 0  
Not detected in 25g | 4 composites of 15 samples  
(Limit: ND/1500g) | Every 10 batches |
|                 | Bacillus cereus/g | n = 5  
c = 1  
m = 100  
M = 1000 | 1 sample  
(Limit: 100/g) | Every 10 batches |
|                 | Coagulase-positive Staphylococci/g | n = 5  
c = 1  
m = 0  
M = 10 | 1 sample  
(Limit: <1/g) | Every 10 batches |
|                 | Cronobacter | n = 30  
c = 0  
Not detected in 10g | 2 composites of 15 samples  
(Limit: ND/300g) | Every 10 batches |
|                 | Coliforms/g | n = 5  
c = 2  
m = 10  
M = 100 | 1 sample  
(Limit: 10/g) | Every 10 batches |
| Powdered infant formula products | Salmonella/25g | n = 60  
c = 0  
Not detected in 25g | 4 composites of 15 samples  
(Limit: ND/1500g) | Every 10 batches |
|                 | Bacillus cereus/g | n = 5  
c = 0  
m = 100 | 1 sample  
(Limit: 100/g) | Every 10 batches |
|                 | Coagulase-positive Staphylococci/g | n = 5  
c = 1  
m = <1  
M = 10 | 1 sample  
(Limit: <1/g) | Every 10 batches |
|                 | Cronobacter | n = 30  
c = 0  
Not detected in 10g | 2 composites of 15 samples  
(Limit: ND/300g) | Every 10 batches |
|                 | Coliforms/g | n = 5  
c = 2  
m = <3  
M = 10 | 1 sample  
(Limit: <3/g) | Every 10 batches |
|                 | SPC/g | n = 5  
c = 2  
m = 1,000  
M = 10,000 | 1 sample  
(Limit: 1,000/g) | Every 10 batches |

* Includes whole milk powder, skim milk powder, and other dairy derived powders including whey powder.

**General comments:**
- Routine testing for *L. monocytogenes*, coagulase-positive Staphylococci, and *Clostridium perfringens* ([User guide to Standard 1.6.1](#)) is not required as the risk in dried milk products is considered to be very low.
- *B. cereus*: Testing is required because this organism can survive pasteurisation and drying processes, and has the capacity to grow when the powder is reconstituted. Monitoring is also important as seasonal conditions may see spikes in *B. cereus* levels in powders.
5. Ice cream and frozen products (including frozen dairy desserts)

<table>
<thead>
<tr>
<th>Product types</th>
<th>Test to be conducted</th>
<th>Limit – FSC or User Guide</th>
<th>DFSV minimum requirements</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sampling</td>
<td></td>
</tr>
</tbody>
</table>
| Frozen ice cream, frozen ice cream mix, and edible frozen ices | *E. coli/g* | n = 5  
c = 0  
m = 0 | 1 sample  
(Limit: <1/g) | Every 20 batches |
|               | *L. monocytogenes*  | n = 5  
c = 0  
m = 100 | Recommend 5 samples  
composited and tested,  
then enumerate if a  
positive result | Every 20 batches |
| Frozen ice cream, frozen ice cream mix, and edible frozen ices with high-risk post-pasteurisation inclusions | *E. coli/g* | n = 5  
c = 0  
m = 0 | 1 sample  
(Limit: <1/g) | Every 20 batches |
|               | *Salmonella/25g*  | n = 5  
c = 0  
Not detected in 25g | 5 samples composited  
(Limit: ND/125g) | Every 20 batches |
|               | *L. monocytogenes*  | n = 5  
c = 0  
m = 100 | Recommend 5 samples  
composited and tested,  
then enumerate if a  
positive result | Every 20 batches |
| Refrigerated ice cream mixes (e.g. soft serve mix) | *E. coli/g* | n = 5  
c = 0  
m = 0 | 1 sample  
(Limit: <1/g) | Every 10 batches |
|               | *L. monocytogenes*  | n = 5  
c = 0  
Not detected in 25g | 5 samples composited  
(Limit: ND/125g) | Every 10 batches |

**General comments:**
- Testing for Salmonella may not be required if the relevant post-pasteurisation inclusions have been tested by an accredited laboratory (i.e. NATA certified).

6. Fermented milk products

<table>
<thead>
<tr>
<th>Product types</th>
<th>Test to be conducted</th>
<th>Limit – FSC or User Guide</th>
<th>DFSV minimum requirements</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sampling</td>
<td></td>
</tr>
</tbody>
</table>
| Yoghurt and other fermented milk products (e.g. sour cream) | *E. coli/g* | n = 5  
c = 0  
m = 0 | 1 sample  
(Limit: <1/g) | Every 20 batches |
| Yoghurt and other fermented milk products with high-risk post-pasteurisation inclusions | Coagulase-positive Staphylococci/g | n = 5  
c = 2  
m = 10  
M = 100 | 1 sample  
(Limit: 10/g) | Every 10 batches |
|               | *E. coli/g* | n = 5  
c = 0  
m = 0 | 1 sample  
(Limit: <1/g) | Every 10 batches |
|               | *Salmonella/25g* | n = 5  
c = 0  
Not detected in 25g | 5 samples composited  
(Limit: ND/125g) | Every 10 batches |

**General comments:**
- Under the Food Standards Code, the fermented milk product yoghurt must have a pH <4.5. Because of this low pH, these products are considered to be of low risk.
- The addition of inclusions (e.g. fruit purees, nuts, syrups) increases the risk associated with these products.
- Where the pH of a fermented milk product is >4.5, they are classified as dairy desserts. These products present a greater risk to consumers (see Section 7 for minimum testing requirements).
- Testing for Salmonella and *S. aureus* may not be required if the relevant post-pasteurisation inclusions have been tested by an accredited laboratory (i.e. NATA certified).
## 7. Dairy-based dips and desserts

<table>
<thead>
<tr>
<th>Product types</th>
<th>Test to be conducted</th>
<th>Limit – FSC or DFSV minimum requirements</th>
<th>DFSV minimum requirements frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sampling Frequency</td>
<td></td>
</tr>
</tbody>
</table>
|               | Coagulase-positive Staphylococci/g | n = 5  
c = 2  
m = 100  
M = 1000 | 1 sample (Limit: 100/g)  
Every 10 batches |
|               | E. coli/g             | n = 5  
c = 1  
m = 10  
M = 100 | 1 sample (Limit: 10/g)  
Every 10 batches |
|               | Listeria monocytogenes/25g | n = 5  
c = 0  
Not detected in 25g | 5 samples composited (Limit: ND/125g)  
Every 10 batches |
| Dairy-based desserts and dips with a pH above 4.5 (e.g. custard, mousse, etc) | Coagulase-positive Staphylococci/g | n = 5  
c = 2  
m = 100  
M = 1000 | 1 sample (Limit: 100/g)  
Every 10 batches |
|               | E. coli/g             | n = 5  
c = 1  
m = 10  
M = 100 | 1 sample (Limit: 10/g)  
Every 10 batches |
|               | Listeria monocytogenes/25g | n = 5  
c = 0  
Not detected in 25g | 5 samples composited (Limit: ND/125g)  
Every 10 batches |
| Dairy-based desserts and dips with a pH above 4.5 with high-risk post pasteurisation inclusions | Coagulase-positive Staphylococci/g | n = 5  
c = 2  
m = 100  
M = 1000 | 1 sample (Limit: 100/g)  
Every 10 batches |
|               | E. coli/g             | n = 5  
c = 1  
m = 10  
M = 100 | 1 sample (Limit: 10/g)  
Every 10 batches |
|               | Listeria monocytogenes/25g | n = 5  
c = 0  
Not detected in 25g | 5 samples composited (Limit: ND/125g)  
Every 10 batches |
| Dairy-based desserts and dips with a pH below 4.5 | Coagulase-positive Staphylococci/g | n = 5  
c = 2  
m = 100  
M = 1000 | 1 sample (Limit: 100/g)  
Every 20 batches |
|               | E. coli/g             | n = 5  
c = 1  
m = 10  
M = 100 | 1 sample (Limit: 10/g)  
Every 20 batches |
|               | Listeria monocytogenes/25g | n = 5  
c = 0  
m = 100 | Recommend 5 samples composited and tested, then enumerate if a positive result  
Every 20 batches |
| Dairy-based desserts and dips with a pH below 4.5 with high-risk post-pasteurisation inclusions | Coagulase-positive Staphylococci/g | n = 5  
c = 2  
m = 100  
M = 1000 | 1 sample (Limit: 100/g)  
Every 10 batches |
|               | E. coli/g             | n = 5  
c = 1  
m = 10  
M = 100 | 1 sample (Limit: 10/g)  
Every 10 batches |
|               | Listeria monocytogenes/25g | n = 5  
c = 0  
m = 100 | Recommend 5 samples composited and tested, then enumerate if a positive result  
Every 10 batches |
|               | Salmonella/25g | n = 5  
c = 0  
Not detected in 25g | 5 samples composited (Limit: ND/125g)  
Every 10 batches |

**General comments:**

- Testing for Salmonella may not be required if the relevant post-pasteurisation ingredients have been tested by an accredited laboratory (i.e. NATA certified).
- Where products are hot-filled (e.g. custards), the above tests may not be relevant. In such cases the manufacturer will be required to provide a product testing regime to meet other microbial testing criteria (e.g. B. cereus).
Summary

The management of dairy food safety is built around a documented food safety program which incorporates adherence to pre-requisite programs based on good manufacturing practices. Product safety requires effective implementation of HACCP, its validation, application of monitoring and control measures at critical control points, and corrective action in the event of non-conformances.

The testing of finished products provides information that assists manufacturers assess their performance in controlling the safety of dairy products i.e. testing finished product provides evidence that the food safety program is working effectively and verifies process control.

The range of tests a manufacturer performs and the frequency of testing are influenced by the risk-status of the dairy food and their history of compliance with the Australia New Zealand Food Standards Code. While testing every batch is desirable, it is not practical for all manufacturers, so the sampling and testing frequency outlined in this document is considered as the minimum. By tracking their microbiological test data, manufacturers can demonstrate process control and can identify emerging issues or trends which may necessitate an increased frequency of sampling and testing.

Licensees are encouraged to test more frequently than the minimum requirements outlined in this document. This is especially important when introducing a new product, commissioning new plant and equipment, supplying product to a vulnerable population sub-group, etc. A manufacturer may also be directed by a DFSV authorised officer to undertake sampling at a frequency exceeding these minimum requirements. Similarly, where a manufacturer is required to implement a clearance program, this takes priority over the minimum sampling requirements.

Products destined for export will need to meet the criteria in the Food Standards Code as opposed to the sampling and testing regimes in this document.
Appendix I - Ready-to-eat (RTE) foods

Ready-to-eat food is food that is ordinarily consumed in the same state as that in which it is sold or distributed. Most dairy foods can be considered RTE foods.

Standard 1.6.1 in the Australia New Zealand Food Standards Code was revised in 2014, and now includes limits for *Listeria monocytogenes* in RTE foods. The limits vary depending on whether a food will or will not support the growth of the *L. monocytogenes*.

These limits recognise that the potential for a food to support the growth of *L. monocytogenes* is a main factor in the risk of consumers contracting listeriosis. For foods in which the growth of *L. monocytogenes* will not occur, occasional low-level detections (less than 100 cfu/g) are not considered to present a public health risk. For example, in cheeses where physico-chemical properties don’t allow *L. monocytogenes* to grow, such as romano or parmesan, the acceptable limit will be <100 *L. monocytogenes*/g. Where the physico-chemical properties of the cheese do allow *L. monocytogenes* to grow, such as surface-ripened soft cheese, the organism must not be detected in 125 grams.

<table>
<thead>
<tr>
<th>Product types</th>
<th>Test to be conducted</th>
<th>Limit – FSC</th>
<th>DFSV minimum requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n = 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c = 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>m = 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Listeria monocytogenes</em>/25g</td>
<td>Not detected in 25g</td>
<td>5 samples composited (Limit: ND/125g or ml)</td>
</tr>
<tr>
<td></td>
<td><em>Listeria monocytogenes</em>/g</td>
<td></td>
<td>Recommend 5 samples composited and tested, then enumerate if a positive result</td>
</tr>
</tbody>
</table>

General comments:
- Growth of *L. monocytogenes* will not occur in a ready-to-eat food if:
  - the food has a pH less than 4.4 regardless of water activity; or
  - the food has a water activity less than 0.92 regardless of pH; or
  - the food has a pH less than 5.0 in combination with a water activity of less than 0.94; or
  - the food has a refrigerated shelf life no greater than 5 days; or
  - the food is frozen (including foods consumed frozen and those intended to be thawed immediately before consumption); or
  - it can be validated that the level of *L. monocytogenes* will not increase by greater than 0.5 log cfu/g over the food’s stated shelf life.
- RTE products which are hot filled (e.g. custard, processed cheese, etc filled at ~80°C) and where recontamination is highly unlikely present a low risk, hence testing for *L. monocytogenes* is not normally required. Food safety is managed by monitoring the production process.
- With any detection of *Listeria* spp. in a dairy food, the licensee must advise DFSV and undertake a clearance program.
# Glossary of terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch/Lot</td>
<td>A lot or batch of food typically represents one day’s continuous production on one production line. Food from a batch is expected to have uniform character and quality, and is produced during the same cycle of manufacture i.e. a shift, a single day’s production. Where different products are made on the same production line during the course of a single day, they may be considered as a single batch for the purpose of these microbiological testing criteria. The term batch has the same meaning as lot.</td>
</tr>
<tr>
<td>Dairy product(s)</td>
<td>Products defined by Standard 4.2.4 Primary production and processing standard for dairy products of the Australia New Zealand Food Standards Code.</td>
</tr>
<tr>
<td>Foodborne illness</td>
<td>Any illness resulting from the consumption of contaminated food.</td>
</tr>
<tr>
<td>High-risk inclusions</td>
<td>High-risk inclusions/ingredients may introduce pathogenic microorganisms into a dairy product when they are added post-pasteurisation. Examples include herbs and spices (dried and fresh), cookie dough, nuts, fruits and syrups. Where inclusions have been heat treated, acidified, or contain preservatives they are considered low-risk.</td>
</tr>
<tr>
<td>Pathogen</td>
<td>Any microorganism capable of causing foodborne illness.</td>
</tr>
<tr>
<td>Qualitative testing</td>
<td>Laboratory analysis which establishes the presence or absence of a microorganism such as a pathogen in a defined quantity of food.</td>
</tr>
<tr>
<td>Quantitative testing</td>
<td>Laboratory analysis which quantifies the number of microorganisms in a defined quantity of food.</td>
</tr>
<tr>
<td>Routine sampling and testing</td>
<td>Regular and on-going sampling and testing that is conducted to detect microorganisms in dairy products and the processing environment. Routine sampling and testing is an essential element of a dairy manufacturer’s food safety program.</td>
</tr>
<tr>
<td>Three-class sampling plan</td>
<td>If a number of microorganisms in a unit-volume is allowable, a three-class sampling plan is usually adopted. Three-class plans separate good quality, from marginally acceptable quality, and unacceptable quality using the terms n, c, m, and M.</td>
</tr>
<tr>
<td></td>
<td>n = number of sample units drawn from a lot/batch</td>
</tr>
<tr>
<td></td>
<td>c = maximum allowable number of sample units yielding a positive result (presence/absence testing) or exceeding the microbiological limit m. For pathogens, c is usually 0</td>
</tr>
<tr>
<td></td>
<td>m = microbiological limit which separates good quality from non-acceptable or defective quality. The maximum number of samples which may exceed this limit is given by c</td>
</tr>
<tr>
<td></td>
<td>M = microbiological limit above which results are unacceptable or defective</td>
</tr>
<tr>
<td>Two-class sampling plan</td>
<td>Tested product falls into one of two classes – conforming or non-conforming. A two-class sampling plan is performed when the microorganism of concern is not permitted in the food sample.</td>
</tr>
</tbody>
</table>
References

Food Standards Australia New Zealand 2015, Australia New Zealand Food Standards Code – Standard 1.6.1 – Microbiological Limits for Food, Commonwealth of Australia, Canberra.


Food Standards Australia New Zealand 2001, User guide to Standard 1.6.1 – Microbiological Limits for Food with additional guideline criteria, FSANZ, Canberra.


Further information

Further information is available at www.dairysafe.vic.gov.au or contact DFSV on (03) 9810 5900 or info@dairysafe.vic.gov.au

In Australia, state or territory government agencies are responsible for enforcing and interpreting the Australia New Zealand Food Standards Code (the Code). This document describes the minimum testing requirements for dairy products manufactured in Victoria under the regulatory oversight of DFSV. DFSV does not guarantee the currency or completeness of the information on microbiological limits in the Code or its subsidiary documents. Links to other websites are provided as a service to users and do not constitute endorsement, nor are we able to give assurances of the accuracy of their content. DFSV accepts no legal liability arising from, or connected to, or loss due to any reliance on this document.

© Copyright Dairy Food Safety Victoria 2015